翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

symplectic spinor bundle : ウィキペディア英語版
symplectic spinor bundle
In differential geometry, given a metaplectic structure \pi_\colon\to M\, on a 2n-dimensional symplectic manifold (M, \omega),\, one defines the symplectic spinor bundle to be the Hilbert space bundle \pi_\colon\to M\, associated to the metaplectic structure via the metaplectic representation. The metaplectic representation of the metaplectic group —the two-fold covering of the symplectic group— gives rise to an infinite rank vector bundle, this is the symplectic spinor construction due to Bertram Kostant.
A section of the symplectic spinor bundle \, is called a symplectic spinor field.
==Formal definition==
Let (,F_) be a metaplectic structure on a symplectic manifold (M, \omega),\, that is, an equivariant lift of the symplectic frame bundle \pi_\colon\to M\, with respect to the double covering \rho\colon )\to ).\,
The symplectic spinor bundle \, is defined 〔 page 37
〕 to be the Hilbert space bundle
: =\times_L^2(^n)\,
associated to the metaplectic structure via the metaplectic representation \colon )\to (L^2(^n)),\, also called the Segal-Shale-Weil 〔
〕 representation of ).\, Here, the notation ()\, denotes the group of unitary operators acting on a Hilbert space .\,
The Segal-Shale-Weil representation 〔
〕 is an infinite dimensional unitary representation
of the metaplectic group ) on the space of all complex
valued square Lebesgue integrable functions L^2(^n).\, Because of the infinite dimension,
the Segal-Shale-Weil representation is not so easy to handle.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「symplectic spinor bundle」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.